182 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
飞机承力梁是飞机的重要承力结构件,长时间处于受力状态,在其虎口位置应力集中易萌生疲劳裂纹,而裂纹隐藏于较厚的多层异质复合层下,导致涡流检测提离大,并且空间狭小对检测带来极大不便。文章针对多层异质结构件隐藏裂纹的大提离检测难题,提出基于谐振法的涡流检测传感方法,仿真研究线圈尺寸参数及结构对检测信号的影响,发现检测线圈与平衡线圈间距为1.5 mm时,具有最佳检测灵敏度。为验证该仿真模型的正确性,开展承力部件大提离涡流检测试验,试验结果表明,激励频率为30 kHz时具有最佳检测灵敏度,在复合层厚度为3 mm时信号幅值达到最小,保持复合材料层厚度不变,随着激励频率的增加,涡流检测信号幅值呈衰减趋势,最小检测缺陷长×宽×深尺寸为5 mm×0.2 mm×5 mm,且能够对缺陷进行精准定位,为飞机多层异质结构隐藏裂纹的定量检测提供依据。
Abstract:The aircraft load-bearing beam is an important structural component of the aircraft, which is subjected to stress for a long time. At its tiger mouth position, stress concentration can easily lead to fatigue cracks, and the cracks are hidden under thick multi-layer heterogeneous composite layers, resulting in large eddy current testing lift and extremely inconvenient detection due to limited space. This article proposes a resonant based eddy current detection sensing method for detecting hidden cracks in multi-layer heterostructures. The influence of coil size parameters and structure on the detection signal is simulated and studied. It is found that the optimal detection sensitivity is achieved when the distance between the detection coil and the balance coil is 1.5 mm. To verify the correctness of the simulation model, a large lift off eddy current testing experiment was conducted on the load-bearing components. The test results showed that the optimal detection sensitivity was achieved at an excitation frequency of 30 kHz. The signal amplitude reached its minimum at a composite layer thickness of 3 mm, while keeping the composite material layer thickness unchanged. As the excitation frequency increased, the amplitude of the eddy current testing signal showed a decreasing trend. The minimum detection defect length × width × depth dimension was 5 mm × 0.2 mm × 5 mm, and the defect could be accurately located, providing a basis for quantitative detection of hidden cracks in multi-layer heterogeneous structures of aircraft.
[1]蔡佳昆,王智,薛军,等.某型飞机主起落架梁疲劳裂纹的综合监测[C]//航空安全与装备维修技术——航空安全与装备维修技术学术研讨会论文集, 2014:286-293.
[2]曹强,贺旺,王燕礼,等.飞机主起落架梁裂纹无损检测结果不一致原因分析[J].南京理工大学学报, 2020, 44(5):531-535.CAO Q, HE W, WANG Y L, et al. Analysis of inconsistent non-destructive testing results of main landing gear beam crack of aircraft[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5):531-535.
[3]王森,林正,季舒安,等.电梯曳引钢带内部钢丝绳无损检测[J/OL].中国测试, 1-10[2025-08-06].WANG S, LIN Z, JI S A, et al. Nondestructive testing of wire rope inside elevator drag steel belt[J/OL]. China Measurement&Test, 1-10[2025-08-06].
[4]吴斌,魏炜,曾志平,等. 3000万次列车荷载作用下Ⅲ型板式轨道力学性能演化试验[J].铁道科学与工程学报, 2019,16(1):1-7.WU B, WEI W, ZENG Z P, et al. Study on the evolution of mechanical properties of CRTSⅢslab track under 30 million times train load[J]. Journal of Railway Science and Engineering, 2019, 16(1):1-7.
[5]查浩,任尊松,薛蕊,等.高速动车组轴箱轴承累积损伤与疲劳寿命研究[J].铁道学报, 2018, 40(10):30-35.ZHA H, REN Z S, XUE R, et al. Study on cumulative damage and fatigue life of Axle box bearings in high-speed EMU[J].Journal of the China Railway Society, 2018, 40(10):30-35.
[6]董磊,王怀东,陈卓,等.城市轨道车辆转向架构架振动疲劳失效影响因素分析[J].大连交通大学学报, 2018, 39(6):5-9.DONG L, WANG H D, CHEN Z, et al. Factor analysis of vibration failure for urban rail bogie frame[J]. Journal of Dalian Jiaotong University, 2018, 39(6):5-9.
[7]曾鑫磊,万强,陈文彰,等.基于方向性探头的双轴塑性变形定量涡流检测研究[J].实验力学, 2024, 39(2):168-182.ZENG X L, WAN Q, CHEN W Z, et al. Research on quantitative eddy current testing of biaxial plastic deformation based on a directional probe[J]. Journal of Experimental Mechanics, 2024, 39(2):168-182.
[8]STELLIN T, TIJUM R V, ENGEL U. Modelling and experimental study of a micro-forging process from metal strip for the reduction of defects in mass production[J]. Production Engineering, 2016, 10(2):103-112.
[9]李轶名.基于涡流/磁记忆集成检测方法的金属构件缺陷评价研究[D].南昌:南昌航空大学, 2019.
[10]张成侠.磁粉探伤在汽轮机叶片质量检测中的应用[J].中国新技术新产品, 2019(1):66-67.
[11]沙经伟,范孟豹,曹丙花,等.金属构件硬度的无损检测研究进展与展望[J].机械工程学报, 2023, 59(24):1-17.SHA J W, FAN M B, CAO B H, et al. Non-destructive testing for hardness of metal components:recent advances and future perspectives[J]. Journal of Mechanical Engineering, 2023,59(24):1-17.
[12]刘甜甜,徐桂荣,迟天佐,等.荧光渗透检测法在铝合金件上的应用及分析[J].兵器材料科学与工程, 2021, 44(6):118-122.LIU T T, XU G R, CHI T Z, et al. Application and analysis of fluorescence penetration detection method on aluminum alloy parts[J]. Ordnance Material Science and Engineering, 2021,44(6):118-122.
[13]张国才,谢小荣,刘永钊,等.叶片前缘仿形涡流检测仿真与试验设计[J].航空学报, 2021, 42(2):398-409.ZHANG G C, XIE X R, LIU Y Z, et al. Simulation and experimental design of profiling eddy current detection of blade leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):398-409.
[14]宋凯,张弛,晏晨辉,等.基于双参数表征的航空发动机轮盘模型辅助涡流检测可靠性[J].航空学报, 2023, 44(13):124-134.SONG K, ZHANG C, YAN C H, et al. Reliability of aeroengine wheel model assisted eddy current testing based on twoparameter representation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13):124-134.
[15]于波,宋凯.飞机承力部件缺陷尖端的涡流检测定位方法[J].失效分析与预防, 2023, 18(6):351-355.YU B, SONG K. Eddy current detection and tip location of defects in aircraft bearing parts[J]. Failure Analysis and Prevention, 2023, 18(6):351-355.
基本信息:
DOI:
中图分类号:V267;V215
引用信息:
[1]奚之飞,陈文亮.基于谐振法的飞机多层异质结构件涡流检测方法研究[J].中国测试,2025,51(08):21-32.
基金信息: