nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 12, v.50 60-64
诱骗态环回差分正交相移量子密钥分发协议
基金项目(Foundation): 中国南方电网有限责任公司科技项目(000005KK52220034(ZDKJXM20222036))
邮箱(Email):
DOI:
摘要:

环回差分相移协议是一类特殊的高维相位编码的量子密钥分发协议,具有免参数监控和高误码容忍的两项独特优势。环回差分正交相移协议是该协议的一种改进协议,采用四种相位的编码方案代替原本的两相位编码方案,能够实现更好的协议性能。虽然环回差分相移类协议可以免参数监控运行,但是当采用参数监控方案时可以实现更高的性能表现。该文提出一种环回差分正交相移协议的诱骗态方案,通过监控不同强度脉冲串的计数率给出更加紧致的密钥率公式。根据的仿真结果,诱骗态的环回差分正交相移协议相比不使用诱骗态的协议具有明显的性能优势。

Abstract:

Round-robin-differential-phase-shift(RRDPS) is a special high-dimensional phase-coding quantum key distribution protocol. It has two distinctive advantages of free for parameter monitoring and its high error tolerance. Round-robin-differential-quadrature-phase-shift(RRDQPS) is a variant of this protocol, which encodes four different phases instead of two to improve performance. Though these RRDPS-type protocols can run without parameter monitoring, the performance can be improved with parameter monitoring. In this article,we propose a decoy-state scheme for the RRDQPS protocol, giving a tight key rate formula by monitoring the click rates of different intensities. According to our numerical simulation, our scheme has a distinct performance advantage compared with the scheme without decoy states.

参考文献

[1]BENNETT C H,BRASSARD G.Quantum cryptography:Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers,Systems,and Signal Processing.Bangalore:IEEE,1984:175-179.

[2]LUCAMARINI M,YUAN Z L,DYNES J F,et al.Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J].Nature,2018,557(7705):400-403.

[3]MA X,ZENG P,ZHOU H.Phase-matching quantum key distribution[J].Physical Review X,2018,8(3):031043.

[4]WANG X B,YU Z W,HU X L.Twin-field quantum key distribution with large misalignment error[J].Physical Review A,2018,98(6):062323.

[5]CUI C,YIN Z Q,WANG R,et al.Twin-field quantum key distribution without phase postselection[J].Physical Review Applied,2019,11(3):034053.

[6]ZENG P,ZHOU H,WU W,et al.Mode-pairing quantum key distribution[J].Nature Communications,2022,13(1):3903.

[7]XIE Y M,LU Y S,WENG C X,et al.Breaking the rate-loss bound of quantum key distribution with asynchronous twophoton interference[J].PRX Quantum,2022,3(2):020315.

[8]LIAO S K,CAI W Q,LIU W Y,et al.Satellite-to-ground quantum key distribution[J].Nature,2017,549(7670):43-47.

[9]MINDER M,PITTALUGA M,ROBERTS G L,et al.Experimental quantum key distribution beyond the repeaterless secret key capacity[J].Nature Photonics,2019,13(5):334-338.

[10]WANG S,HE D Y,YIN Z Q,et al.Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J].Physical Review X,2019,9(2):021046.

[11]WANG S,YIN Z Q,HE D Y,et al.Twin-field quantum key distribution over 830-km fibre[J].Nature photonics,2022,16(2):154-161.

[12]LIU Y,ZHANG W J,JIANG C,et al.Experimental twin-field quantum key distribution over 1000 km fiber distance[J].Physical Review Letters,2023,130(21):210801.

[13]LU F Y,WANG Z H,ZAPATERO V,et al.Experimental demonstration of fully passive quantum key distribution[J].Physical Review Letters,2023,131(11):110802.

[14]SASAKI T,YAMAMOTO Y,KOASHI M.Practical quantum key distribution protocol without monitoring signal disturbance[J].Nature,2014,509(7501):475-478.

[15]WANG S,YIN Z Q,CHEN W,et al.Experimental demonstration of a quantum key distribution without signal disturbance monitoring[J].Nature Photonics,2015,9(12):832-836.

[16]TAKESUE H,SASAKI T,TAMAKI K,et al.Experimental quantum key distribution without monitoring signal disturbance[J].Nature Photonics,2015,9(12):827.

[17]LI Y H,CAO Y,DAI H,et al.Experimental round-robin differential phase-shift quantum key distribution[J].Physical Review A,2016,93(3):030302.

[18]YIN Z Q,WANG S,CHEN W,et al.Improved security bound for the round-robin-differential-phase-shift quantum key distribution[J].Nature communications,2018,9(1):457.

[19]WANG R,YIN Z Q,WANG S,et al.Round-robin-differentialphase-shift quantum key distribution with monitoring signal disturbance[J].Optics Letters,2018,43(17):4228-4231.

[20]MATSUURA T,SASAKI T,KOASHI M.Refined security proof of the round-robin differential-phase-shift quantum key distribution and its improved performance in the finite-sized case[J].Physical Review A,2019,99(4):042303.

[21]ZHOU C,ZHANG Y Y,BAO W S,et al.Round-robin differential quadrature phase-shift quantum key distribution[J].Chinese Physics B,2017,26(2):020303.

[22]WANG R,YIN Z Q,CUI C,et al.Security proof for singlephoton round-robin differential-quadrature-phase-shift quantum key distribution[J].Physical Review A,2018,98(6):062331.

[23]SHAN Y G,YIN Z Q,LIU H,et al.Security proof for roundrobin differential-quadrature-phase-shift quantum key distribution[J].Physical Review A,2022,105(3):032441.

[24]HWANG W Y.Quantum key distribution with high loss:toward global secure communication[J].Physical review letters,2003,91(5):057901.

[25]LO H K,MA X,CHEN K.Decoy state quantum key distribution[J].Physical review letters,2005,94(23):230504.

[26]WANG X B.Beating the photon-number-splitting attack in practical quantum cryptography[J].Physical review letters,2005,94(23):230503.

基本信息:

DOI:

中图分类号:O413;TN918.4

引用信息:

[1]林旭斌,黄昱,朱顺等.诱骗态环回差分正交相移量子密钥分发协议[J].中国测试,2024,50(12):60-64.

基金信息:

中国南方电网有限责任公司科技项目(000005KK52220034(ZDKJXM20222036))

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文