nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.51 33-39
叶片表面粗糙度测量三维和二维评价比对分析
基金项目(Foundation): 国家科技重大专项(J2019-VⅢ-0015-0176)
邮箱(Email):
DOI:
摘要:

叶片是一类非规则复杂曲面零件,其表面粗糙度的大小对发动机的性能有着重要影响,但关于其表面粗糙度参数的测量评价标准规范还不够完善。尤其在三维测量方面,虽然表面三维形貌测量技术已逐渐发展成熟,但对应的评定标准和校准规范未能同步跟上,难以指导叶片表面粗糙度具体的测量工艺。为提高叶片表面粗糙度的测量可靠性,对叶片表面粗糙度测量过程的影响因素如叶片装夹、光照强弱、评定长度等开展试验研究,并对粗糙度三维评定方法和二维评定方法开展对比分析。试验结果表明,在重复装夹和光照度变化的情况下,三维评定方法的测量结果相对波动基本在3%以内,在相同取样长度的情况下,三维评定方法参与评定的数据长度达到2倍取样长度其测量结果即达到稳定。三维评定方法相对于二维来说,受到测量过程影响因素的影响程度更小,测量结果更稳定,测量效率更高。一定程度上验证三维表面粗糙度评定方法的优势,为推进表面粗糙度三维测量设备和方法在民机发动机叶片研制上的推广和应用提供支撑。

Abstract:

Aircraft engine blades are a type of irregular and complex curved parts, and the performance of the engine is greatly affected by the surface roughness of the blades. However, the measurement and evaluation standards for blade surface roughness parameters are not yet perfect. Especially in the field of 3D measurement, although the 3D topography measurement technology of the surface has been gradually developed, the corresponding evaluation standards and calibration specifications have not kept up, making it difficult to guide the specific measurement process of blade surface roughness. In order to improve the measurement reliability of blade surface roughness, experimental research has been conducted on the influencing factors of blade surface roughness measurement process, such as blade clamping, light intensity,and evaluation length. A comparative analysis has been conducted on the 3D and 2D evaluation methods of roughness. It is indicated by the experimental results that the relative fluctuation of the measurement results of the 3D evaluation method is basically within 3% under repeated clamping and changes in illumination,and the measurement results of the 3D evaluation method can reach stability when the length of the data involved in the evaluation reaches twice the sampling length. The 3D evaluation method is less affected by the factors affecting the measurement process compared to 2D methods, resulting in more stable measurement results and higher measurement efficiency. To some extent, the advantages of the 3D surface roughness evaluation method have been verified, providing support for the promotion and application of surface roughness 3D measurement equipment and methods in the development of civil aircraft engine blades.

参考文献

[1]李都喜,苑举勇,张坤伸.机械加工表面质量影响因素及控制措施的探讨[J].科技信息, 2011(29):107-108.LI D X, YUAN J Y, ZHANG K S. The influencing factors and controlling measures of the surface quality of machining[J].Science&Technology Information, 2011(29):107-108.

[2]高继昆.白光光学测头测量发动机叶片型面技术分析[J].中国测试, 2018, 44(7):25-29.GAO J K. Technical analysis of measuring of engine blade profile with white light optical probe[J]. China Measurement&Test, 2018, 44(7):25-29.

[3]罗瑛,朱杨洋,王宗平,等.基于多视数据重构损失标定的叶片型面光学检测[J].中国测试, 2024, 50(8):118-124.LUO Y, ZHU Y Y, WANG Z P, et al. Optical measurement of blade profile based on multi-view data reconstruction losscalibratio[J]. China Measurement&Test, 2024, 50(8):118-124.

[4]李学哲,石照耀,陈洪芳,等.航空发动机叶片型面测量技术研究现状与趋势[J].北京工业大学学报, 2017, 43(4):557-565.LI X Z, SHI Z Y, CHEN H F, et al. Current status and trends of aeroengine blade profile metrology[J]. Journal of Beijing University of Technology, 2017, 43(4):557-565.

[5]陈俊宇,殷鸣,殷国富,等.燃机叶片型面三维光学扫描检测方法研究.中国测试, 2015, 41(11):7-11.CHEN J Y, YIN M, YIN G F, et al. Research of 3D optical scanning inspection method of gas turbine blade surface[J].China Measurement&Test, 2015, 41(11):7-11.

[6]赵舜,高炜祥,李星占,等.基于三维形貌仿真的超精密飞切加工表面质量影响因素分析[J].制造技术与机床, 2020(9):136-143.ZHAO S, GAO W X, LI X Z, et al. Analysis of surface quality influencing factors of ultra-precision flying cutting processing based on 3D surface topography simulation[J]. Manufacturing Technology&Machine Tool, 2020(9):136-143.

[7]毛胜辉,索小娟.机械加工表面质量对零件使用性能的影响分析[J].机械管理开发, 2017, 32(3):29-30.MAO S H, SUO X J. Analysis of the influence of machined surface quality on the performance of parts[J]. Mechanical Management and Development, 2017, 32(3):29-30.

[8]张晶晶,刘佳,杨胜强,等.叶片抛磨表面粗糙度优化预测模型及实验研究[J].机械设计与制造. 2022,(6):218-222.ZHANG J J, LIU J, YANG S Q, et al. Optimal prediction model and experimental research on blade polishing surface roughness[J]. Machinery Design&Manufacture, 2022,(6):218-222.

[9]中国航空工业总公司.叶片叶型的标注、公差与叶身表面粗糙度:HB 5647-98[S].北京:中国航空工业总公司第三〇一研究所, 1999.Aviation Industry Corporation of China, Ltd. Dimensions,Tolerances, and Surface Roughness of blade profile:HB 5647-98[S]. Beijing:Aviation Industry Corporation of China, Ltd.301 Research Institute, 1999.

[10]国家质量监督检验检疫总局,国家标准化管理委员会.产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数:GB/T 3505-2009[S].北京:中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Geometrical Product Specifications(GPS)-Surface texture:Profile method-Terms, definitions and surface texture parameters:GB/T 3505-2009[S]. Beijing:Standards Press of China, 2009.

[11]王飞,莫与明,杜鹏程,等.电容法测试金属表面粗糙度技术研究[J].中国测试, 2023, 49(7):95-100.WANG F, MO Y M, DU P C, et al. Development of metal surface roughness measurement technology based on capacitance principle[J]. China Measurement&Test, 2023,49(7):95-100.

[12]国家质量监督检验检疫总局,国家标准化管理委员会.产品几何技术规范(GPS)表面结构轮廓法表面粗糙度参数及其数值:GB/T 1031-2009[S].北京:中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Geometrical Product Specifications(GPS)-Surface texture:Profile method-Surface roughness parameters and their values:GB/T 1031-2009[S]. Beijing:Standards Press of China, 2009.

[13]国家质量监督检验检疫总局,国家标准化管理委员会.产品几何技术规范(GPS)表面结构轮廓法评定表面结构的规则和方法:GB/T 10610-2009[S].北京:中国标准出版社,2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Geometrical Product Specifications(GPS)-Surface texture:Profile method-Rules and procedures for the assessment of surface texture:GB/T 10610-2009[S]. Beijing:Standards Press of China, 2009.

[14]国家质量监督检验检疫总局,国家标准化管理委员会.产品几何技术规范(GPS)表面结构区域法第2部分:术语、定义及表面结构参数:GB/T 33523.2-2017[S].北京:中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Geometrical Product Specifications(GPS)-Surface texture:Areal-Part 2:Terms, definitions and surface texture parameters:GB/T 33523.2-2017[S]. Beijing:Standards Press of China, 2017.

[15]李萍,闫英,周平.白光干涉测量法中蝠翼效应的模拟分析[J].中国测试, 2022, 48(1):1-8.LI P, YAN Y, ZHOU P. Research of batwing effect in whitelight interferometry[J]. China Measurement&Test, 2022,48(1):1-8.

[16]何永辉,蒋剑峰,赵万生.基于扫描白光干涉法的表面三维轮廓仪[J].光学技术, 2001, 27(2):150-152.HE Y H, JIANG J F, ZHAO W S. Surface 3D profiler based on scanning white light interferometry method[J]. Optical Technology, 2001, 27(2):150-152.

[17]刘盼,史建华,李昕愉.发动机叶片型面测量坐标系建立方法研究[J].计量与测试技术, 2021, 48(1):71-74.LIU P, SHI J H, LI X Y. Research on establishment method of measuring coordinate system for engine blade profile[J].Metrology&Measurement Technique, 2021, 48(1):71-74.

[18]苏健,于正阳,徐磊.基于FPGA的CCD成像电路软件设计[J].电子测量技术, 2019, 42(9):59-63.SU J, YU ZH Y, XU L. Software design of CCD imaging circuit based on FPGA[J]. Electronic Measurement Technology, 2019, 42(9):59-63.

基本信息:

DOI:

中图分类号:TG84

引用信息:

[1]黄文娟,金炜,倪博等.叶片表面粗糙度测量三维和二维评价比对分析[J].中国测试,2025,51(08):33-39.

基金信息:

国家科技重大专项(J2019-VⅢ-0015-0176)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文