nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.51 51-56
发动机涡轮盘裂纹深度定量检测方法
基金项目(Foundation):
邮箱(Email):
DOI:
摘要:

针对航空发动机涡轮盘等曲面金属构件表面裂纹深度高精度检测的迫切需求,提出一种以柔性电磁传感器为基础、脉冲激励与机器学习相结合的定量检测方法,设计差分式柔性电磁传感器与脉冲涡流检测系统,并通过仿真分析得到检测信号多个时频域特征与裂纹深度的关系,在此基础上提出基于人工神经网络的裂纹深度智能反演算法,并通过数据预处理与迁移学习相结合的方法将大量仿真数据和少量实验数据共同应用于反演模型的训练,解决训练样本不足的问题。实验结果表明该方法可实现0~6 mm裂纹深度的定量检测,测量不确定度为0.13 mm,为曲面金属构件的缺陷定量检测提供方法和技术支撑。

Abstract:

In response to the urgent need for high-precision detection of surface crack depth of curved metal components such as aero engine turbine discs, a quantitative detection method based on flexible electromagnetic sensors and combining pulse excitation and machine learning was proposed. A differential flexible electromagnetic sensor and pulse eddy current detection system were designed, and the relationship between multiple time-frequency domain characteristics of the detection signal and crack depth was obtained through simulation analysis. On this basis, an intelligent inversion algorithm for crack depth based on artificial neural networks was proposed. A large amount of simulation data and a small amount of experimental data were applied to the training of inversion model through a combination of data preprocessing and transfer learning, solving the problem of insufficient training samples. The experimental results show that this method can be utilized to detect cracks whose depth ranging from 0 to 6 mm, and the measurement uncertainty of crack depth is 0.13 mm, which providing method and technical support for quantitative detection of defects of curved metal components.

参考文献

[1]UTRATA D, DARREL A. Effect of varying inspection parameters in crack depth measurements using potential drop method[C]. 41st Annual Review of Progress in Quantitative Nondestructive Evaluation, 2015 AIP Conference Proceedings, 2015:353-360.

[2]OCHIAI M. Laser-induced surface acoustic wave technique for precise depth measurement of stress corrosion cracking[C]. 2nd International Symposium on LaserUltrasonics, Journal of Physics:Conference Series ,2011(278):012009.

[3]MARIA V, ALEXANDER V, PAUL D. Accurate depth measurement of small surface-breaking cracks using an ultrasonic array post-processing technique[J]. NDT&E International ,2014(68):105–112.

[4]JUNG J Y, YOON H J, CHO H W. A Study on crack depth measurement in steel structures using image-based intensity differences[J]. Advances in Civil Engineering Volume,2018:1-10.

[5]JIANG F, LIU S. Evaluation of cracks with different hidden depths and shapes using surface magnetic field measurements based on semi-analytical modeling[J]. J. Phys. D:Appl.Phys,2018(51):125002.

[6]ZHAO S X, SHEN Y, WANG J Z, et al. Extreme learning machine based sub-surface crack detection and quantification method for ACFM[J]. Journal of Magnetism and Magnetic Materials,2022(546):168865.

[7]CHEN H Z, ZHANG Z J, YIN W L, et al. A study on depth classification of defects by machine learning based on hyperparameter search[J]. Measurement ,2022(189):110660.

[8]YI Q J, MALEKMOHAMMADI H, TIAN G Y, et al.Quantitative evaluation of crack depths on thin aluminum plate using eddy current pulse compression thermography[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6):3963-3973.

[9]康达,孔庆茹,马啸啸,等.超声全聚焦成像的裂纹类缺陷定量误差分析[J].中国测试, 2024, 50(2):136-145.KANG D, KONG Q R, MA X X, et al. Quantitative error analysis of crack defects in ultrasonic total focusing method imaging[J]. China Measurement&Test, 2024, 50(2):136-145.

[10]颜江涛,赵纪元,王琛玮.裂纹深度的激光超声透射瑞利波定量检测[J].中国测试, 2025, 51(2):140-147.YAN J T, ZHAO J Y, WANG C W. Quantitative detection of crack depth by laser ultrasonic transmitted rayleigh wave[J].China Measurement&Test, 2025, 51(2):140-147.

[11]MA H, YE X B, CHEN D X, et al. Imaging and quantitative detection of complex defects with a flexible electromagnetic array sensor[J]. Insight, 2022, 64(4):213-218.

[12]JESSICA H, YOUSSEF T, SAMI A, et al. Wearable flexible body matched electromagnetic sensors for personalized noninvasive glucose monitoring[J]. Scientific Reports, 2022(12):14885.

[13]谷士鹏.基于薄膜传感器的传动锥齿轮柔性测试技术[J].中国测试, 2025, 51(3):170-176.GU S P. Flexible testing technology of transmission bevel gear based on thin film sensor[J]. China Measurement&Test,2025, 51(3):170-176.

[14]ALI S, TIAN G Y, FAN M B. Pulsed eddy current nondestructive testing and evaluation:a review[J]. Chin. J. Mech.Eng, 2017:30:500–514.

[15]陈涛,尹永奇,吕程,等.脉冲涡流缺陷检测理论与技术研究综述[J].电子测量与仪器学报, 2024, 38(9):1-10.CHEN T, YIN Y Q, LYU C, et al. Review of research on theory and technology of pulsed eddy current testing for detection of defects[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(9):1-10.

[16]谢浩平,姚文胜,叶宇峰,等.基于脉冲涡流检测系统的管道内检测机器人设计研究[J].中国测试, 2025, 51(7):136-146.XIE H P, YAO W SH, YE Y F, et al. Design and research of pipeline inner inspection robot based on pulsed eddy current inspection system[J]. China Measurement&Test, 2025,51(7):136-146.

基本信息:

DOI:

中图分类号:V263.6

引用信息:

[1]陈棣湘,刘丽辉,任远等.发动机涡轮盘裂纹深度定量检测方法[J].中国测试,2025,51(09):51-56.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文