nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.51 50-57+130
SiO2纳米流体射流冲击泡沫金属的传热分析
基金项目(Foundation): 上海市市场监督管理局科研计划项目(2022-03)
邮箱(Email):
DOI:
摘要:

采用SiO2纳米流体射流冲击线性变化孔隙率的泡沫金属来强化传热,以获得更好的冷却效果。文章主要通过数值模拟的方法,利用Brinkman-Forchheimer-extended Darcy模型描述泡沫金属内部的传热。首先,分析恒定孔隙率以及线性变化孔隙率分别受到水和SiO2纳米流体射流冲击对受热面传热的影响;其次,分析不同孔隙率泡沫金属内部温度场的变化。结果表明:当孔隙率ε从0.6到0.9线性变化的泡沫金属受到雷诺数Re=10 000的射流冲击时,体积分数?=8.5%的纳米流体冲击受热面所获得的局部努塞尔数比纯水高68.1%;并且在相同的雷诺数条件下,局部努塞尔数和湍流强度与SiO2纳米流体的体积分数成正比,且体积分数越大,流体所获得的动量越高。基于模拟结果得到线性变化孔隙率与SiO2纳米流体射流冲击的耦合可以获得更好传热效果的结论。该项研究对设备降温提供有价值的参考意义。

Abstract:

The SiO2 nanofluid jet impinges on foam metal with linearly varying porosity to enhance heat transfer,so as to obtain better cooling effect.In this paper,the Brinkman Forchheimer Extended Darcy model is used to describe the heat transfer in foam metal through numerical simulation.Firstly,the effects of water and SiO2 nanofluid jet impingement on the heat transfer of the heating surface of constant porosity and linearly varying porosity are analyzed.Secondly,the change of temperature field in foam metal with different porosity was analyzed.The results show that when the foam metal with linearly varying porosity ε from 0.6 to 0.9 is impacted by the jet with Reynolds number Re=10000,the local Nusselt number obtained by impacting the heating surface with 8.5%volume fraction of nanofluid is 68.1% higher than that of pure water.At the same Reynolds number,the local Nusselt number and turbulence intensity are proportional to the volume fraction of SiO2 nanofluid,and the larger the volume fraction,the higher the momentum obtained by the fluid.Based on the simulation results,it is concluded that the coupling of linearly varying porosity and the impact of SiO2 nanofluid jet can obtain better heat transfer effect.This study provides valuable reference for equipment cooling.

参考文献

[1]白玉,尤文斌,丁永红,等.弹载固态存储器防护结构的隔热研究[J].国外电子测量技术,2021,40(9):59-63.BAI Y,YOU W B,DING Y H,et al.Thermal insulation analysis of missile borne solid state memory protection structure[J].Foreign Electronic Measurement Technology,2021,40(9):59-63.

[2]WOIF D H,INCROPERA F P.Jet impingement boiling[M],1993.

[3]CHOU Y.J,HUNG Y.H.Impingement cooling of an isothermally heated surface with a confined slot Jet[J].ASME Journal of Heat Transfer,1994,116(2):479-482.

[4]ZHIGUO T,HAI L,ZHANG F.Numerical study of liquid jet impingement flow and heat transfer of a cone heat sink[J].International Journal of Numerical Methods for Heat and Fluid Flow,2019,29(11):4074-4092.

[5]BEHNIA M,PARNEIX S,SHABANY Y,et al.Numerical study of turbulent heat transfer in confined and unconfined impinging jets[J].International Journal of Heat and Fluid Flow,1999,20(1):1-9.

[6]NARAYANAN V,SEYED Y J,PAGE R H.An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow[J].International Journal of Heat and Mass Transfer,2004,47(8-9):1827-1845.

[7]YOGI K,KRISHNAN S,PRABHU S V.Experimental investigation on the local heat transfer with an unconfined slot jet impinging on a metal foamed flat plate[J].International Journal of Thermal Sciences,2021,169:107065.

[8]李林星,陈威,祝啸,等.狭缝射流冲击泡沫金属强化换热的数值模拟[J].低温与超导,2015,43(10):67-73.LI L X,CHEN W,ZHU X,et al.The numerical simulation of forced convection in porous medium subject to impinging jet[J].Cryogenics&Superconductivity,2015,43(10):67-73.

[9]LI Q,XUA N Y,YU F.Experimental investigation of submerged single jet impingement using Cu-water nanofluid[J].Applied Thermal Engineering,2012,36:426-433.

[10]NGUYEN C T,GALANIS N,POLIDORI G,et al.An experimental study of a confined and submerged impinging jet heat transfer using Al_2O_3-water nanofluid[J].International Journal of Thermal Sciences,2009,48(2):401-411.

[11]WAEL M,MEDHAT M,AMGAD M,et al.Numerical study of free surface axisymmetric jet impinging on a heated flat surface utilizing high concentration SiO_2 nanofluid[J].Journal of the Taiwan Institute of Chemical Engineers,2022,135:104401.

[12]程建,陈威,张云嵩,等.SiO_2纳米流体射流冲击泡沫金属强化传热数值模拟[J]低温与超导,2017,45(12):55-61.CHENG J,CHEN W,ZHANG Y S,et al.Numerical simulation of enhanced heat transfer of foam metal subjected to jet impinging of SiO_2-water nanofluid[J].Cryogenics&Superconductivity,2017,45(12):55-61.

[13]VINCENZO B,BERNARDO B,ANNA P,et al.Heat transfer enhancement of laminar impinging slot jets by nanofluids and metal foams[J].Thermal Science and Engineering Progress,2021,22:100860.

[14]MEDHAT M,WAEL M,MOHAMED A,et al.Experimental study of free single jet impingement utilizing high concentration SiO_2 nanoparticles water base nanofluid[J].Applied Thermal Engineering,2019,160:114019.

[15]付文强,高辉,薛征欣,等.多孔材料有效导热系数的实验和模型研究[J].中国测试,2016,42(5):124-130.FU W Q,GAO H,XUE Z X,et al.Experimental measurement and calculation of thermal conductivity of porous material[J].China Measurement&Test,2016,42(5):124-130.

[16]CALMIDI V.Transport phenomena in high porosity fibrous metal foams[D].University of Colorado,1998.

[17]JENG T M,TZENG S C.Experiment study of forced convection in metallic porous block subject to a confined slot jet[J].International Journal of Thermal Sciences,2007,46(12):1242-1250.

[18]LIU Y,CHEN W.Thermal analysis in the evaporation of flowing thin liquid film confined by gradient or double-layered porous layer subjected to air jet impingement[J].International Journal of Thermal Sciences,2022,179:107603.

基本信息:

DOI:

中图分类号:TK124;TN03

引用信息:

[1]刘燚,张忠立,金愿等.SiO_2纳米流体射流冲击泡沫金属的传热分析[J].中国测试,2025,51(05):50-57+130.

基金信息:

上海市市场监督管理局科研计划项目(2022-03)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文