446 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
为研究碳纤维(CF)对纳米偏高岭土再生混凝土(NRAC)力学性能的影响,以纳米偏高岭土(NMK)掺量、CF掺量、再生粗骨料(RA)取代率、CF长度作为影响因素进行正交试验,研究CF对NRAC抗压强度、抗拉强度以及拉压比的影响,结合压汞法及扫描电镜法对再生混凝土(RAC)孔隙结构及微观形貌进行分析,得出其改善机理。结果表明:RA取代率和NMK掺量对抗压强度影响效果显著,CF掺量对抗拉及拉压比影响效果显著;在优先考虑RAC抗压强度、抗拉强度以及拉压比的情况下,最优配比分别为:A3B4C1D2、A1B3C1D3、A1B3C4D3;CF的掺入增加RAC的孔隙率,但由于NMK的存在,孔隙率只呈现少量增加。此外CF的分隔及阻裂效应细化RAC的孔隙结构;CF通过桥接,起到承载作用的同时,使得裂缝扩展路径更为复杂,不易产生贯穿裂缝。并且NMK的填充及火山灰效应可增强纤维-砂浆界面过渡区的粘结强度,进一步发挥CF的增强作用,由此提高RAC的强度及延性。
Abstract:In order to study the effect of carbon fiber(CF) on the mechanical properties of nano metakaolin recycled concrete(NRAC), orthogonal tests were conducted using the content of nano metakaolin(NMK), CF content, the replacement rate of recycled coarse aggregate(RA) and the length of CF as influencing factors to study the effects of CF on the compressive strength, tensile strength and tension-compression ratio of NRAC.The pore structure and micro-morphology of recycled concrete(RAC) were analyzed by mercury intrusion method and scanning electron microscope method, in order to find out the improvement mechanism of CF on NRAC. The results show that the replacement rate of RA and the content of NMK have significant effects on the compressive strength, and the content of CF has remarkable effects on the tensile strength and tensioncompression ratio. Considering the compressive strength, tensile strength and tension-compression ratio of recycled concrete, the optimal ratios are A3B4C1D2, A1B3C1D3, A1B3C4D3, respectively. The incorporation of CF increases the porosity of RAC, but the porosity increases only slightly due to the presence of NMK. In addition,the separation and crack resistance effect of CF refine the pore structure of RAC. CF plays a bearing role through the bridge function, which makes the crack propagation path more complicated and is not easy to produce transverse cracks. Moreover, the filling effect and volcanic ash effect of NMK enhance the bond strength of the transition zone of fiber-mortar interface, further play the strengthening role of CF, and thus improving the strength and ductility of RAC.
[1]盛朝晖, 牛培飞, 游文斐. 多因素对再生混凝土力学性能及抗冻性的影响 [J]. 中国测试, 2021, 47(2): 140-148.SHENG Z H, NIU P F, YOU W F. Effect of multiple factors on mechanical properties and frost resistance of recycled concrete[J]. China Measurement & Test, 2021, 47(2): 140-148.
[2]胡海波, 闫春岭, 何智海, 等. 基于正交试验的纳米 Ca CO3再生混凝土抗压强度研究 [J]. 混凝土与水泥制品, 2020(6):94-97.HU H B, YAN C L, HE Z H, et al. Study on compressive strengths of recycled concrete with nano-Ca CO3 carbonate based on orthogonal test[J]. China Concrete and Cement Products, 2020(6): 94-97.
[3]肖建庄, 陈祥磊, 李标, 等. 纳米 Si O2 和粉煤灰复掺对再生混凝土性能的影响 [J]. 建筑科学与工程学报, 2020, 37(1):26-32.XIAO J Z, CHEN X L, LI B, et al. Effect of mixed nano-Si O2 and fly ash on properties of recycled aggregate concrete[J].Journal of Architecture and Civil Engineering, 2020, 37(1): 26-32.
[4]WANG S L, ZHU B L. Influence of nano-Si O2 on the mechanical properties of recycled aggregate concrete with and without polyvinyl alcohol (PVA) fiber[J]. Materials, 2021,14(6): 1446.
[5]STEVE W M S, RILYA R, ADRIANA T. Mechanical properties of cement concrete composites containing Nano-Metakaolin[J]. Construction and Building Engineering,2017(14): 05001-1-6.
[6]范颖芳, 张均良, 李秋超, 等. 纳米偏高岭土对水泥砂浆断裂性能影响的试验研究 [J]. 东南大学学报 (自然科学版),2020, 50(4): 637-644.FAN Y F, ZHANG J L, LI Q C, et al. Experimental study on the effect of nano-metakaolin on the fracture behavior of cement mortar[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 637-644.
[7]张恒. 纳米偏高岭土强化再生混凝土性能研究 [D]. 张家口:河北建筑工程学院, 2021.ZHANG H. Study on properties of recycled concrete reinforced with nano metakaolin[D]. Zhangjiakou: Hebei University of Architecture, 2021.
[8]杜向琴, 刘志龙. 碳纤维对混凝土力学性能的影响研究 [J].混凝土, 2018(4): 91-94.DU X Q, LIU Z L. Study of carbon fiber on mechanical properties of concrete[J]. Concrete, 2018(4): 91-94.
[9]任彦华, 程赫明, 何天淳, 等. 碳纤维混凝土的力学性能试验研究 [J]. 云南农业大学学报, 2010, 25(5): 697-702.REN Y H, CHENG H M, HE T C, et al. The experimental study on mechanical properties of short carbon fiber concrete[J]. Journal of Yunnan Agricultural University(Natural Science), 2010, 25(5): 697-702.
[10]侯敏, 陶燕, 陶忠, 等. 短切碳纤维混凝土的基本力学性能与分析 [J]. 混凝土, 2020(1): 74-77.HOU M, TAO Y, TAO Z, et al. Basic mechanical properties and analysis of chopped carbon fiber reinforced concrete[J].Concrete, 2020(1): 74-77.
[11]王建超, 陆佳韦, 周静海, 等. 碳纤维再生混凝土力学性能的试验研究 [J]. 混凝土, 2018(12): 95-103.WANG J C, LU J W, ZHOU J H, et al. Experimental research on mechanical properties of carbon fiber recycled concrete[J].Concrete, 2018(12): 95-103.
[12]佟钰, 田鑫, 朱长军, 等. 短切碳纤维混凝土的力学强度实验与分析 [J]. 硅酸盐通报, 2015, 34(8): 2281-2285.TONG Y, TIAN X, ZHU C J, et al. Experiments and analysis on mechanical strength of carbon fiber reinforced concrete[J].Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2281-2285.
[13]王启成, 吴科如. 钢纤维和碳纤维混凝土力学性能的研究[J]. 建筑材料学报, 2003(3): 253-256.WANG Q C, WU K R. Study on the mechanical properties of carbon fiber and steel fiber concrete[J]. Journal of Building Materials, 2003(3): 253-256.
[14]普 通 混 凝 土 用 砂 、 石 质 量 及 检 验 方 法 标 准 : JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2006.Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete: JGJ 52—2006[S]. Beijing: China Architecture & Building Press,2006.
[15]肖建庄. 再生混凝土 [M]. 北京: 中国建筑工业出版社,2008: 35-36.XIAO J Z. Recycled concrete[M]. Beijing: China Architecture & Building Press, 2008: 35-36.
基本信息:
DOI:
中图分类号:TU528
引用信息:
[1]阎杰,罗岩,于旭涛等.碳纤维对纳米偏高岭土再生混凝土力学性能及微观结构试验研究[J].中国测试,2025,51(06):17-24.
基金信息:
河北省教育厅自然科学重点项目(ZD2022066); 河北省建设科技研究指导性计划项目(2022-2107)